Из существующих вариантов разъяснения младшим школьникам смысла действия умножения наиболее предпочтителен способ знакомства через сложение одинаковых слагаемых, особенно для практичного левши. Рациональный левша понимает, что лучше один раз помучиться с умножением, чем столько раз складывать! Не было еще ни одного ребенка, не понявшего значения каждого из сомножителей в записи 3 х 2 = 6. Они сознательно заменяют произведение суммой. И, наоборот, не вычисляя сравнивают произведения и находят значение нового произведения по известному с использованием действий сложения или вычитания. При этом они не делают в задачах ошибки, записывая стоимость трех конфет выражением вида 3 х 2, в котором каждая конфета оценивается в два рубля.
Однако при введении нового понятия перед детьми всегда ставятся практические задачи, подводящие их к пониманию его смысла. Традиционно при объяснении содержания действия умножения предлагается посчитать количество квадратиков внутри прямоугольника, то есть определить его площадь. Причем определять площадь приходится сразу двумя способами, пытаясь самостоятельно открыть переместительный закон умножения.
Задачу как практическую решают все, но какое отношение к ней имеет умножение, не понимает, честно признать, никто. Ведь в ходе работы столбики для подсчета квадратиков располагаются сначала вертикально, потом горизонтально. Более трудное для понимания левшой задание придумать трудно. Учащиеся младших классов очень долго не понимают понятия "площадь". Они просто заучивают формулу определения площади прямоугольника наизусть и постоянно путают понятия периметра и площади.
Приходится давать разные практические задания в занимательной и игровой форме, чтобы ученики осознали вдруг "нутром", что такое площадь и что они, собственно, все это время искали. Поэтому появление на начальном этапе подобных геометрических интерпретаций, наоборот, запутывает левшу, а не вносит ясности, как предполагалось, в понимание смысла действия умножения.
Освоение нового действия детям очень нравится, и единственной загвоздкой служат примеры вида с х 1, в которых, конечно, получают... 1. На первых порах представляет трудность и умножение на нуль, ведь логика ребенка такова: если пишем 6 х 0, то 6 уже взяли (!), а значит, получаем 6! И приходится на практике просить взять что-то нуль раз, подводит кинестезия – раз написано, значит, существует. Эти ошибки иногда встречаются и позднее, например если ребенок устал или волнуется на контрольной работе.
Наибольшие трудности приносит некоторым левшам заучивание таблицы умножения. Уже на этапе счета тройками, двойками и т.д. можно выделить несчастного, обреченного на долгую борьбу с таблицей. И хотя ее освоение осуществляется поэтапно, учащиеся испытывают трудности из-за запоминания большого объема случаев. И хотя они с пониманием произносят правило о перемене мест сомножителей, но не могут на стадии заучивания таблицы выстроить столь длинную цепочку рассуждений:
7 х 4 = 4 х 7 = 28
– за требуемые несколько секунд.
Самым же неприятным является то, что ответы не запоминаются. При работе по запоминанию табличных случаев приходится пускать в ход все средства, включая анализ столбика ответов. Например умножения на 6: цифра 4 встречается в сочетании с цифрой 2 дважды:
6 х 4 = 24 и 6 х 7 = 42.
Кстати, ответ: 24 – один из наиболее плохо запоминающихся, а "вспоминание" звучит так: "А я его всегда забываю... Там еще 4 и 2, но 42 дальше 24, да?" В следующий раз уже звучит победный вопль: "Помню: 42 или 24, да, 24!"
Опять идут в ход карточки с ответами, но понятно, что у этого мученика и все остальные уроки тоже вызывают разного рода трудности, поэтому перебирать их приходится уже в постели, и то не всегда. И уже заученные примеры забываются. Конечно, таким ребятам проверка таблицы умножения на время противопоказана.
Главное в работе с ними – заставить их самих поверить в успех, без этого добиться победы будет невозможно. Надо вместе вести статистику уменьшения количества ошибок, проводить проверку таблицы, подбирая в задания побольше выученных примеров, воодушевляя ребенка. Совместный поиск способа запоминания с опорой на ведущий вид памяти быстрее приведет к победе, чем трагическое фиксирование неудач.
Способы запоминания таблицы умножения можно перечислить здесь :
В период, когда ребенок еще не запомнил все необходимые для решения случаи, а их использование нельзя откладывать, вполне допустимо пользоваться таблицей умножения в качестве справочного материала, чтобы не создавать излишнего стресса для ученика. Конечно, нужно и родителям, и учителю разграничивать невыученное по неуважительному поводу и неспособность быстро запоминать подобный материал по объективным причинам.
Однако и здесь следует иметь в виду, что безграничная возможность пользования справочной табличкой отбивает стремление ее запомнить. Поэтому пользоваться с согласия преподавателя подсказками можно, чтобы не отставать от темпа класса, при ежедневной усердной работе по запоминанию таблицы.
Как уже говорилось выше, переместительное свойство умножения усваивается левшами хорошо, они даже больше других ратуют за его применение, но ... из примеров оно перемещается на задачи. И, совершенно не задумываясь, они теперь при определении стоимости трех конфет пишут: 3 х 2 = 6 – и с пеной у рта доказывают, что нет никакой разницы. Свойство умножения, а тем более требования программы из-за их зловредных свойств никто отменять не будет. Отличия же в смысле производимого действия они прекрасно понимают, хотя им очень трудно специально отслеживать, что на что множить, поэтому их упрямство небезосновательно. Надо твердо настаивать на своем требовании, тогда у левши возникает необходимость специально следить за порядком записи сомножителей, с чем он на 90% справляется.
Большую сложность для левшей представляет распределительное свойство умножения, поскольку они множат только на одно из слагаемых, игнорируя систематически второе, особенно после знакомства с умножением числа на произведение. Правда, после изучения последнего добавляется новая ошибка: они пытаются множить число на каждый множитель произведения, а потом или перемножать, или суммировать результаты. И все это имеет место после неоднократного сравнения результатов умножения числа на значение суммы и суммы произведений того же числа на каждое из слагаемых. Они ЗАБЫВАЮТ.
Поэтому пришлось создать яркий образ происходящего. Помог случай, когда два человека пытались одновременно пролезть в дверь – очень уж спешили. Мы рассмотрели результат, а дверь "производила" умножение. Как можно было попасть в класс? Двумя способами: пройдя по очереди через дверь, то есть произвести умножение каждого слагаемого, или протиснуться вместе – в скобке, то есть в виде суммы. Количество ошибок пошло на убыль, да и дети росли.
Умножения числа на произведение иллюстрировали круглыми числами:
36 х 2 х 5 = 36 х (2 х 5) = 36 х 10 = 360.
К сожалению, все ясно, пока дети работают совместно с учителем. А поскольку детям близко образное сравнение, то это задание мы представили цепочкой, командой, передающей эстафетную палочку. Зачем терять время и мусолить ее? Умножили по одному разу, чтобы поучаствовал каждый множитель, и помчались дальше, важно поудачнее выбрать последовательность умножения. Это поняли и, главное, приняли все. А удачный выбор последовательности умножения определяется сообразительностью ребенка. Даже азарт появляется!
Однако у части детей рассмотренные свойства умножения вызывают в лучшем случае только недоумение. А в худшем – отчаяние из-за невозможности прогнозирования и выбора наилучшего способа вычислений. Это вызвано, в первую очередь, нетвердым знанием состава чисел в пределах 10. А также тем, что несмотря на знание табличных случаев умножения, у них отсутствует умение быстрого просчитывания с последующим сравнением и выбором наилучшего варианта в уме.
С одной стороны, таких учеников надо обучать удерживанию в уме достаточно объемного массива информации при одновременном оперировании ею. Причем это не обязательно должны быть действия с числами в математике, можно наращивать предложения и помнить все добавления. С другой стороны, необходимы постоянные упражнения в устном счете с нарастанием как количества действий, так и сложности примеров. И, наконец, при наличии времени все задания, которые требуется решать наиболее удобным способом, выполнять, перебирая все возможные варианты с аргументированным выбором наилучшего.
Не от всех детей в начальной школе удается добиться самостоятельного применения изучаемых свойств умножения на практике. Не может – пусть решает "в лоб", но сдаться можно только после того, как использованы все средства помощи ребенку. И даже после этого не все потеряно – ведь впереди еще средняя школа.
Источник: nsc.1september.ru
автор: Ольга ИНШАКОВА, "Леворукие дети и математика".
статью полностью можно найти здесь